We found 82 results that contain "behavioral intervention"
Posted on: #iteachmsu
PEDAGOGICAL DESIGN
Developing a Picture of LGBTQA+ Student Success
Topic Area: Student Success
Presented By: Jesse Beal, Heather Shea
Abstract:
In this interactive, data- and practice-informed presentation, we will explore LGBTQA+ student success as a vital component of University student success efforts. Due to the lack of data on traditional student success metrics (persistence, retention, time to degree, and graduation) for LGBTQA+ students, LGBTQA+ student success work must be creative, collaborative, cross-disciplinary, and expansive. We will show how developing LGBTQA+ inclusive policies and practices supports student success and increases a sense of belonging. We will share the impact of implementing LGBTQA+ inclusive data collection practices on understanding student success on other campuses. We will explore the mental health challenges LGBTQA+ students face due to LGBTQA+ oppression, how these challenges have intensified during the COVID-19 pandemic, available mental health support services, and promising practices for intervention and support. We will also discuss ways in which each of us, as educators, can make a real and tangible difference for our LGBTQA+ students. The ability of LGBTQA+ students to learn, develop, and succeed is inextricably tied to their sense of belonging and the support provided to them by the University to face and overcome challenges. This session will provide an introduction to theories of LGBTQA+ student success, as well practical application, creative solutions, and methods of intervention.
Presented By: Jesse Beal, Heather Shea
Abstract:
In this interactive, data- and practice-informed presentation, we will explore LGBTQA+ student success as a vital component of University student success efforts. Due to the lack of data on traditional student success metrics (persistence, retention, time to degree, and graduation) for LGBTQA+ students, LGBTQA+ student success work must be creative, collaborative, cross-disciplinary, and expansive. We will show how developing LGBTQA+ inclusive policies and practices supports student success and increases a sense of belonging. We will share the impact of implementing LGBTQA+ inclusive data collection practices on understanding student success on other campuses. We will explore the mental health challenges LGBTQA+ students face due to LGBTQA+ oppression, how these challenges have intensified during the COVID-19 pandemic, available mental health support services, and promising practices for intervention and support. We will also discuss ways in which each of us, as educators, can make a real and tangible difference for our LGBTQA+ students. The ability of LGBTQA+ students to learn, develop, and succeed is inextricably tied to their sense of belonging and the support provided to them by the University to face and overcome challenges. This session will provide an introduction to theories of LGBTQA+ student success, as well practical application, creative solutions, and methods of intervention.
Authored by:
Jesse Beal, Heather Shea

Posted on: #iteachmsu

Developing a Picture of LGBTQA+ Student Success
Topic Area: Student Success
Presented By: Jesse Beal, Hea...
Presented By: Jesse Beal, Hea...
Authored by:
PEDAGOGICAL DESIGN
Wednesday, Apr 28, 2021
Posted on: #iteachmsu
JUSTICE AND BELONGING
Who (and What) is Diversity Education For? Expanding Assessment Research on Anti-Racist Diversity Ed
Topic Area: DEI
Presented by: Patrick Arnold
Abstract:
Diversity education increasingly takes an anti-racist, anti-sexist, and trans-inclusive orientation, and aims to highlight the dynamics between power, privilege, and forms of oppression which permeate many of our institutions and create conditions of discrimination and marginalization. Extensive scholarship has emerged on the theoretical frameworks, teaching methods, and the impact of diversity education within settings like university courses or DEI (diversity, equity, and inclusion) programming. Educational and psychological research has studied anti-racist diversity education as a form of intervention: A central purpose of anti-racist education, after all, is to increase understanding of bias, and promote ways of ending systemic racial discrimination (Lynch, Swartz, & Isaacs, 2017). Naturally, then, it is common to evaluate the effectiveness of diversity education by measuring change in relevant attitudes, beliefs, or implicit biases of the participants of these interventions. However, diversity education is important not merely because it can be an intervention on existing bias, nor is the only appropriate audience for this context subjects who display such biases. In this pilot study, we explore more expansive data on the impact of diversity education, collected via a large intro course covering diversity in sex, gender, and current social justice issues like #BlackLivesMatter. Importantly, we find that diversity education is particularly impactful on the sense of belonging the students feel toward the university and its community, and especially for students of color enrolled in the course. We argue that further research is needed on diversity education as also an affirmation of belonging in our institutions.
Ingrid Lynch, Sharlene Swartz & Dane Isaacs (2017) Anti-racist moral education: A review of approaches, impact and theoretical underpinnings from 2000 to 2015, Journal of Moral Education, 46:2, 129-144, DOI: 10.1080/03057240.2016.1273825
Presented by: Patrick Arnold
Abstract:
Diversity education increasingly takes an anti-racist, anti-sexist, and trans-inclusive orientation, and aims to highlight the dynamics between power, privilege, and forms of oppression which permeate many of our institutions and create conditions of discrimination and marginalization. Extensive scholarship has emerged on the theoretical frameworks, teaching methods, and the impact of diversity education within settings like university courses or DEI (diversity, equity, and inclusion) programming. Educational and psychological research has studied anti-racist diversity education as a form of intervention: A central purpose of anti-racist education, after all, is to increase understanding of bias, and promote ways of ending systemic racial discrimination (Lynch, Swartz, & Isaacs, 2017). Naturally, then, it is common to evaluate the effectiveness of diversity education by measuring change in relevant attitudes, beliefs, or implicit biases of the participants of these interventions. However, diversity education is important not merely because it can be an intervention on existing bias, nor is the only appropriate audience for this context subjects who display such biases. In this pilot study, we explore more expansive data on the impact of diversity education, collected via a large intro course covering diversity in sex, gender, and current social justice issues like #BlackLivesMatter. Importantly, we find that diversity education is particularly impactful on the sense of belonging the students feel toward the university and its community, and especially for students of color enrolled in the course. We argue that further research is needed on diversity education as also an affirmation of belonging in our institutions.
Ingrid Lynch, Sharlene Swartz & Dane Isaacs (2017) Anti-racist moral education: A review of approaches, impact and theoretical underpinnings from 2000 to 2015, Journal of Moral Education, 46:2, 129-144, DOI: 10.1080/03057240.2016.1273825
Authored by:
Patrick Arnold

Posted on: #iteachmsu

Who (and What) is Diversity Education For? Expanding Assessment Research on Anti-Racist Diversity Ed
Topic Area: DEI
Presented by: Patrick Arnold
Abstract:
Diversi...
Presented by: Patrick Arnold
Abstract:
Diversi...
Authored by:
JUSTICE AND BELONGING
Tuesday, Jul 30, 2024
Posted on: #iteachmsu
PEDAGOGICAL DESIGN
Instructional Guidance Is Key to Promoting Active Learning in Online and Blended Courses
Instructional Guidance Is Key to Promoting Active Learning in Online and Blended Courses Written by: Jay Loftus Ed.D. (MSU / CTLI) & Michele Jacobsen, Ph.D. (Werklund School of Education - University of Calgary)
Abstract - Active learning strategies tend to originate from one of two dominant philosophical perspectives. The first position is active learning as an instructional philosophy, whereby inquiry-based and discovery learning are primary modalities for acquiring new information. The second perspective considers active learning a strategy to supplement the use of more structured forms of instruction, such as direct instruction. From the latter perspective, active learning is employed to reinforce conceptual learning following the presentation of factual or foundational knowledge. This review focuses on the second perspective and uses of active learning as a strategy. We highlight the need and often overlooked requirement for including instructional guidance to ensure active learning, which can be effective and efficient for learning and learners.
Keywords - Active learning, instructional guidance, design strategy, cognitive load, efficiency, online and blended courses
Introduction
Learner engagement in online courses has been a central theme in educational research for several years (Martin, Sun and Westing, 2020). As we consider the academic experiences during the COVID-19 pandemic, which began in 2020 and started to subside in 2022, it is essential to reflect on the importance of course quality (Cavanaugh, Jacquemin and Junker, 2023) and learner experience in online courses (Gherghel, Yasuda and Kita, 2023). Rebounding from our collected experience, learner engagement continues to be an important element of course design and delivery. This fact was highlighted in 2021, when the United States Department of Education (DOE) set forth new standards for institutions offering online courses. To be eligible for Title IV funding, new standards require non-correspondence courses to ensure regular and substantive interactions (RSI) between instructors and students (Downs, 2021). This requirement necessitates the need to find ways to engage students allowing instructors the ability to maximize their interactions. One possible solution is to use active learning techniques that have been shown to increase student engagement and learning outcomes (Ashiabi & O’ Neal, 2008; Cavanaugh et al., 2023).
Active learning is an important instructional strategy and pedagogical philosophy used to design quality learning experiences and foster engaging and interactive learning environments. However, this is not a novel perspective. Many years ago in their seminal work, Chickering and Gamson (1987) discussed the issue of interaction between instructors and students, suggesting that this was an essential practice for quality undergraduate education. The newfound focus on active learning strategies has become more pronounced following an examination of instructional practices from 2020 to 2022. For example, Tan, Chng, Chonardo, Ng and Fung (2020) examined how chemistry instructors incorporated active learning into their instruction to achieve equivalent learning experiences in pre-pandemic classrooms. Similarly, Misra and Mazelfi (2021) described the need to incorporate group work or active learning activities into remote courses to: ‘increase students’ learning motivation, enforce mutual respect for friends’ opinions, foster excitement’ (p. 228). Rincon-Flores & Santos-Guevara (2021) found that gamification as a form of active learning, ‘helped to motivate students to participate actively and improved their academic performance, in a setting where the mode of instruction was remote, synchronous, and online’ (p.43). Further, the implementation of active learning, particularly gamification, was found to be helpful for promoting a more humanizing learning experience (Rincon-Flores & Santos-Guevara, 2021).
This review examines the use of active learning and presents instructional guidance as an often-overlooked element that must be included to make active learning useful and effective. The omission of explicit and direct instructional guidance when using active learning can be inefficient, resulting in an extraneous cognitive burden on learners (Lange, Gorbunova, Shcheglova and Costley, 2022). We hope to outline our justification through a review of active learning and offer strategies to ensure that the implementation of active learning is effective.
Active Learning as an Instructional Philosophy
Active learning is inherently a ‘student-centered’ instructional paradigm that is derived from a constructivist epistemological perspective (Krahenbuhl, 2016; Schunk, 2012). Constructivism theorizes that individuals construct their understanding through interactions and engagements, whereby the refinement of skills and knowledge results over time (Cobb & Bowers, 1999). Through inquiry, students produce experiences and make connections that lead to logical and conceptual growth (Bada & Olusegun, 2015). Engaging learners in activities, tasks, and planned experiences is an overarching premise of active learning as an instructional philosophy. As an overarching instructional philosophy, the role of instructional guidance can be minimized. As Hammer (1997) pointed out many years ago, the role of the instructor in these environments is to provide content and materials, and students are left make ‘discoveries’ through inquiry.
Inquiry-based learning (IBL) is an instructional practice that falls under the general category of ‘active learning’. The tenets of IBL adhere to a constructivist learning philosophy (de Jong et al., 2023) and can be characterized by the following six elements (Duncan & Chinn, 2021). Students will:
Generate knowledge through investigation of a novel issue or problem.
Work ‘actively’ to discover new findings.
Use of evidence to derive conclusions.
Take responsibility for their own learning through ‘epistemological agency’ (Chinn & Iordanou, 2023) and share their learning with a community of learners.
Use problem-solving and reasoning for complex tasks.
Collaborate, share ideas, and derive solutions with peers.
Historically, inquiry-based learning as a form of active learning was adopted as an overall instructional paradigm in disciplines such as medicine and was closely aligned with problem-based learning (PBL) (Barrows, 1996). Proponents of PBL advocate its use because of its emphasis on the development of skills such as communication, collaboration, and critical thinking (Dring, 2019). Critics of these constructivist approaches to instruction highlight the absence of a structure and any form of instructional guidance (Zhang & Cobern, 2021). Instead, they advocate a more explicit form of instruction such as direct instruction (Zhang, Kirschner, Corben and Sweller, 2022).
The view that a hybrid of IBL coupled with direct instruction is the optimal approach to implementing active learning has been highlighted in the recent academic literature (de Jong et al., 2023). The authors suggest that the selection of direct instruction or active learning strategies, such as IBL, should be guided by the desired outcomes of instruction. If the goal of instruction is the acquisition of more foundational or factual information, direct instruction is the preferred strategy. Conversely, IBL strategies are more appropriate ‘for the promotion of deep understanding and transferrable conceptual understanding of topics that are open-ended or susceptible to misconceptions’ (de Jong et al., 2023 p. 7).
The recommendation to use both direct instruction and approaches like IBL has reframed active learning as an instructional strategy rather than an overarching pedagogical philosophy. Active learning should be viewed as a technique or strategy coupled with direct instructional approaches (de Jong et al., 2023).
Active Learning as an Instructional Strategy
Approaching active learning as an instructional strategy rather than an overarching instructional philosophy helps clarify and address the varying perspectives found in the literature. Zhang et al. (2022) suggested that there is a push to emphasize exploration-based pedagogy. This includes instructional approaches deemed to be predicated on inquiry, discovery, or problem-based approaches. This emphasis has resulted in changes to curricular policies that mandate the incorporation of these instructional philosophies. Zhang et al. (2022) discussed how active learning approaches can be incorporated into science education policy to emphasize ‘inquiry’ approaches, despite adequate evidence for effectiveness. Zhang et al. (2022) stated that the ‘disjoint between policy documents and research evidence is exacerbated by the tendency to ignore categories of research that do not provide the favored research outcomes that support teaching science through inquiry and investigations’ (p. 1162). Instead, Zhang et al. (2022) advocate for direct instruction as the primary mode of instruction in science education with active learning or ‘inquiry’ learning incorporated as a strategy, arguing that conceptual or foundational understanding ‘should not be ‘traded off’ by prioritizing other learning outcomes’ (p. 1172).
In response to Zhang et al. ’s (2022) critique, de Jong et al. (2023) argued that research evidence supports the use of inquiry-based instruction for the acquisition of conceptual understanding in science education. They asserted that both inquiry-based (or active learning approaches) and direct instruction serve specific learning needs. Direct instruction may be superior for foundational or factual learning, while inquiry-based or active learning may be better for conceptual understanding and reinforcement. The conclusion of de Jong et al. ’s (2023) argument suggests the use of a hybrid of direct instruction and active learning techniques, such as inquiry-based designs, depending on the stated learning objectives of the course or the desired outcomes.
This hybrid approach to instructional practice can help ensure that intended learning outcomes are matched with effective instructional strategies. Furthermore, a hybrid approach can help maintain efficiency in learning rather than leaving the acquisition of stated learning outcomes to discovery or happenstance (Slocum & Rolf, 2021). This notion was supported by Nerantzi's (2020) suggestion that ‘students learn best when they are active and immersed in the learning process, when their curiosity is stimulated, when they can ask questions and debate in and outside the classroom, when they are supported in this process and feel part of a learning community’ (p. 187). Emphasis on learner engagement may support the belief that active learning strategies combined with direct instruction may provide an optimal environment for learning. Active learning strategies can be used to reinforce the direct or explicit presentation of concepts and principles (Lapitan Jr, Tiangco, Sumalinog, Sabarillo and Diaz, 2021).
Recently, Zhang (2022) examined the importance of integrating direct instruction with hands-on investigation as an instructional model in high school physics classes. Zhang (2022) determined that ‘students benefit more when they develop a thorough theoretical foundation about science ideas before hands-on investigations’ (p. 111). This supports the earlier research in post-secondary STEM disciplines as reported by Freeman, Eddy, McDonough and Wenderoth (2014), where the authors suggested that active learning strategies help to improve student performance. The authors further predicted that active learning interventions would show more significant learning gains when combined with ‘required exercises that are completed outside of formal class sessions’ (p. 8413).
Active Learning Strategies
Active learning is characterized by activities, tasks, and learner interactions. Several characteristics of active learning have been identified, including interaction, peer learning, and instructor presence (Nerantzi, 2020). Technology affords students learning opportunities to connect pre-, during-, and post-formal learning sessions (Zou & Xie, 2019; Nerantzi, 2020). The interactions or techniques that instructors use help determine the types of interactions and outcomes that will result. Instructors may be ‘present’ or active in the process but may not provide adequate instructional guidance for techniques to be efficient or effective (Cooper, Schinske and Tanner, 2021; Kalyuga, Chandler and Sweller. 2001). To highlight this gap, we first consider the widely used technique of think-pair-share, an active learning strategy first introduced by Lyman (1981). This active learning strategy was introduced to provide all students equitable opportunities to think and discuss ideas with their peers. The steps involved in this technique were recently summarized (Cooper et al., 2021): i) provide a prompt or question to students, (ii) give students a chance to think about the question or prompt independently, (iii) have students share their initial answers/responses with a neighbor in a pair or a small group, and (iv) invite a few groups a chance to share their responses with the whole class.
Instructional guidance outlines the structure and actions associated with a task. This includes identifying the goals and subgoals, and suggesting strategies or algorithms to complete the task (Kalyuga et al., 2001). Employing the strategy of think-pair-sharing requires more instructional guidance than instructors may consider. The title of the strategy foreshadows what students will ‘do’ to complete the activity. However, instructional guidance is essential to help students focus on the outcome, rather than merely enacting the process of the activity. Furthermore, instructional guidance or instructions given to students when employing think-pair-sharing can help make this activity more equitable. Cooper et al. (2021) point out that equity is an important consideration when employing think-pair-share. Often, think-pair-share activities are not equitable during the pair or share portion of the exercise, and can be dominated by more vocal or boisterous students. Instructional guidance can help ensure that the activity is more equitable by providing more explicit instructions on expectations for sharing. For example, the instructions for a think-pair-share activity may include those that require each student to compose and then share ideas on a digital whiteboard or on a slide within a larger shared slide deck. The opportunity for equitable learning must be built into the instructions given to students. Otherwise, the learning experience could be meaningless or lack the contribution of students who are timid or find comfort in a passive role during group learning.
Further considerations for instructional guidance are necessary since we now use various forms of Information and Communications Technology (ICT) to promote active learning strategies. Web conferencing tools, such as Zoom, Microsoft Teams, and Google Meet, were used frequently during the height of required remote or hybrid teaching (Ahshan, 2021). Activities that separated students into smaller work groups via breakout rooms or unique discussion threads often included instructions on what students were to accomplish in these smaller collaborative groups. However, the communication of expectations or explicit guidance to help direct students in these groups were often not explicit or were not accessible once the students had been arranged into their isolated workspaces. These active learning exercises would have benefited from clear guidance and instructions on how to ‘call for help’ once separated from the larger group meetings. For example, Li, Xu, He, He, Pribesh, Watson and Major, (2021) described an activity for pair programming that uses zoom breakout rooms. In their description, the authors outlined the steps learners were expected to follow to successfully complete the active learning activity, as well as the mechanisms students used to ask for assistance once isolated from the larger Zoom session that contained the entire class. The description by Li et al. (2021) provided an effective approach to instructional guidance for active learning using Zoom. Often, instructions are verbalized or difficult to refer to once individuals are removed from the general or common room. The lack of explicit instructional guidance in these activities can result in inefficiency (Kalyuga et al., 2001) and often inequity (Cooper et al., 2021).
The final active learning approach considered here was a case study analysis of asynchronous discussion forums. To extend engagement with course content, students were assigned a case study to discuss in a group discussion forum. The group is invited to apply course concepts and respond to questions as they analyze the case and prepare recommendations and a solution (Hartwell et al., 2021). Findings indicate that case study analysis in discussion forums as an active learning strategy “encouraged collaborative learning and contributed to improvement in cognitive learning” (Seethamraju, 2014, p. 9). While this active learning strategy can engage students with course materials to apply these concepts in new situations, it can also result in a high-volume-low-yield set of responses and posts without sufficient instructional guidance and clear expectations for engagement and deliverables. Hartwell, Anderson, Hanlon, and Brown (2021) offer guidance on the effective use of online discussion forums for case study analysis, such as clear expectations for student work in teams (e.g., a team contract), ongoing teamwork support through regular check-ins and assessment criteria, clear timelines and tasks for individual analysis, combined group discussion and cross-case comparison, review of posted solutions, and requirements for clear connections between case analysis and course concepts.
Active Learning & Cognitive Load Theory
In a recent review of current policy and educational standards within STEM disciplines, Zhang et al. (2022) argued that structured instructional approaches such as direct instruction align more closely with cognitive-based learning theories. These theories are better at predicting learning gains and identifying how learning occurs. Cognitive load theory is one such theory based on three main assumptions. First, humans have the capacity to obtain novel information through problem-solving or from other people. Obtaining information from other individuals is more efficient than generating solutions themselves. Second, acquired information is confronted by an individual’s limited capacity to first store information in working memory and then transfer it to unlimited long-term memory for later use. Problem-solving imposes a heavy burden on limited working memory. Thus, learners often rely on the information obtained from others. Finally, information stored in long-term memory can be transferred back to working memory to deal with familiar situations (Sweller, 2020). The recall of information from long-term memory to working memory is not bound by the limits of the initial acquisition of information in working memory (Zhang et al., 2022).
Zhang et al. (2022) state that ‘there never is a justification for engaging in inquiry-based learning or any other pedagogically identical approaches when students need to acquire complex, novel information’ (p. 1170). This is clearly a one-sided argument that focuses on the acquisition of information rather than the application of acquired information. This also presents an obvious issue related to the efficiency of acquiring novel information. However, Zhang et al. (2022) did not argue against the use of active learning or inquiry learning strategies to help reinforce concepts, or the use of the same to support direct instruction.
The combination of active learning strategies with direct instruction can be modified using assumptions of cognitive load, which highlights the need to include instructional guidance with active learning strategies. The inclusion of clear and precise instructions or instructional guidance is critical for effective active learning strategies (Murphy, 2023). As de Jong et al. (2023) suggest, ‘guidance is (initially) needed to make inquiry learning successful' (p.9). We cannot assume that instructional guidance is implied through the name of the activity or can be determined from the previous learning experiences of students. Assumptions lead to ambiguous learning environments that lack instructional guidance, force learners to infer expectations, and rely on prior and/or potentially limited active learning experiences. In the following section, we offer suggestions for improving the use of active learning strategies in online and blended learning environments by adding instructional guidance.
Suggestions for Improving the Use of Active Learning in Online and Blended Courses
The successful implementation of active learning depends on several factors. One of the most critical barriers to the adoption of active learning is student participation. As Finelli et al. (2018) highlighted, students may be reluctant to participate demonstrating behaviors such as, ‘not participating when asked to engage in an in-class activity, distracting other students, performing the required task with minimal effort, complaining, or giving lower course evaluations’ (p. 81). These behaviors are reminiscent of petulant adolescents, often discouraging instructors from implementing active learning in the future. To overcome this, the authors suggested that providing a clear explanation of the purpose of the active learning exercise would help curb resistance to participation. More recently, de Jong et al. (2023) stated a similar perspective that ‘a key issue in interpreting the impact of inquiry-based instruction is the role of guidance’ (p. 5). The inclusion of clear and explicit steps for completing an active learning exercise is a necessary design strategy. This aspect of instructional guidance is relatively easy to achieve with the arrival of generative artificial intelligence (AI) tools used to support instructors. As Crompton and Burke (2024) pointed out in their recent review, ‘ChatGPT can assist teachers in the creation of content, lesson plans, and learning activities’ (p.384). More specifically, Crompton and Burke (2024) suggested that generative AI could be used to provide step-by-step instructions for students. To illustrate this point, we entered the following prompt into the generative AI tool, goblin.tools (https://goblin.tools/) ‘Provide instructions given to students for a carousel activity in a college class.’ The output is shown in Fig. 1. This tool is used to break down tasks into steps, and if needed, it can further break down each step into a more discrete sequence of steps.
Figure 1 . Goblin.tools instructions for carousel active learning exercises.
The omission of explicit steps or direct instructional guidance in an active learning exercise can potentially increase extraneous cognitive load (Klepsch & Seufert, 2020; Sweller, 2020). This pernicious impact on cognitive load is the result of the diversion of one’s limited capacity to reconcile problems (Zhang, 2022). Furthermore, the complexity of active learning within an online or blended course is exacerbated by the inclusion of technologies used for instructional purposes. Instructional guidance should include requisite guidance for tools used in active learning. Again, generative AI tools, such as goblin.tools, may help mitigate the potential burden on cognitive load. For example, the use of webconferencing tools, such as Zoom or Microsoft Teams, has been pervasive in higher education. Anyone who uses these tools can relate to situations in which larger groups are segmented into smaller groups in isolated breakout rooms. Once participant relocation has occurred, there is often confusion regarding the intended purpose or goals of the breakout room. Newer features, such as collaborative whiteboards, exacerbate confusion and the potential for excessive extraneous load. Generative AI instructions (see Figure 2) could be created and offered to mitigate confusion and cognitive load burden.
Figure 2. Zoom collaborative whiteboard instructions produced by goblin.tools
Generative AI has the potential to help outline the steps in active learning exercises. This can be used to minimize confusion and serve as a reference for students. However, instruction alone is often insufficient to make active learning effective. As Finelli et al. (2018) suggest, the inclusion of a rationale for implementing active learning is an effective mechanism to encourage student participation. To this end, we suggest the adoption of what Bereiter (2014) called Principled Practical Knowledge (PPK) which consists of the combination of ‘know-how’ with ‘know why’ (Bereiter, 2014). This perspective develops out of learners’ efforts to solve practical problems. It is a combination of knowledge that extends beyond simply addressing the task at hand. There is an investment of effort to provide a rationale or justification to address the ‘know why’ portion of PPK (Bereiter, 2014). Creating conditions for learners to develop ‘know-how’ is critical when incorporating active learning strategies in online and blended courses. Instructional guidance can reduce ambiguity and extraneous load and can also increase efficiency and potentially equity.
What is typically not included in the instructional guidance offered to students is comprehensive knowledge that outlines the requirements for technology that is often employed in active learning strategies. Ahshan (2021) suggests that technology skill competency is essential for the instructors and learners to implement the activities smoothly. Therefore, knowledge should include the tools employed in active learning. Instructors cannot assume that learners have a universal baseline of technological competency and thus need to be aware of this diversity when providing instructional guidance.
An often-overlooked element of instructional guidance connected to PPK is the ‘know-why’ component. Learners are often prescribed learning tasks without a rationale or justification for their utility. The underlying assumption for implementing active learning strategies is the benefits of collaboration, communication, and collective problem-solving are clear to learners (Dring, 2019; Hartikainen et al., 2019). However, these perceived benefits or rationales are often not provided explicitly to learners; instead, they are implied through use.
When implementing active learning techniques or strategies in a blended or online course one needs to consider not only the ‘know-how,’ but also the ‘know-why.’ Table 1 helps to identify the scope of instructional guidance that should be provided to students.
Table 1. Recommended Type of Instructional Guidance for Active Learning
Know How
Know Why
Activity
Steps
Purpose / Rationale
Technology
Steps
Purpose / Rationale
Outcomes / Products
Completion
Goals
The purpose of providing clear and explicit instructional guidance to learners is to ensure efficiency, equity, and value in incorporating active learning strategies into online and blended learning environments. Along with our argument for “know-why” (Bereiter, 2012), we draw upon Murphy (2023) who highlights the importance of “know-how’ by stating, ‘if students do not understand how a particular learning design helps them arrive at a particular outcome, they tend to be less invested in a course’ (n.p.).
Clear instructional guidance does not diminish the authenticity of various active learning strategies such as problem-based or inquiry-based techniques. In contrast, guidance serves to scaffold the activity and clearly outline learner expectations. Design standards organizations, such as Quality Matters, suggest the inclusion of statements that indicate a plan for how instructors will engage with learners, as well as the requirements for learner engagement in active learning. These statements regarding instructor engagement could be extended to include more transparency in the selection of instructional strategies. Murphy (2023) suggested that instructors should ‘pull back the curtain’ and take a few minutes to share the rationale and research that informs their decision to use strategies such as active learning. Opening a dialogue about the design process with students helps to manage expectations and anxieties that students might have in relation to the ‘What?’, ‘Why?’ and ‘How?’ for the active learning exercises.
Implications for Future Research
We contend that a blend of direct instruction and active learning strategies is optimized by instructional guidance, which provides explicit know-how and know-why for students to engage in learning tasks and activities. The present discussion does not intend to evaluate the utility of active learning as an instructional strategy. The efficacy of active learning is a recurring theme in the academic literature, and the justification for efficacy is largely anecdotal or based on self-reporting data from students (Hartikainen, Rintala, Pylväs and Nokelainen, 2019). Regardless, the process of incorporating active learning strategies with direct instruction appears to be beneficial for learning (Ahshan, 2021; Christie & De Graaff, 2017; Mintzes, 2020), and more likely, the learning experience can be harder to quantify. Our argument relates to the necessary inclusion of instructions and guidance that make the goals of active learning more efficient and effective (de Jong et al., 2023). Scardamalia and Bereiter (2006) stated earlier that knowledge about dominates traditional educational practice. It is the stuff of textbooks, curriculum guidelines, subject-matter tests, and typical school “projects” and “research” papers. Knowledge would be the product of active learning. In contrast, knowledge of, ‘suffers massive neglect’ (p. 101). Knowledge enables learners to do something and allows them to actively participate in an activity. Knowledge comprises both procedural and declarative knowledge. It is activated when the need for it is encountered in the action. Instructional guidance can help facilitate knowledge of, making the use of active learning techniques more efficient and effective.
Research is needed on the impact of instructional guidance on active learning strategies, especially when considering the incorporation of more sophisticated technologies and authentic problems (Rapanta, Botturi, Goodyear, Guardia and Koole 2021; Varvara, Bernardi, Bianchi, Sinjari and Piattelli, 2021). Recently, Lee (2020) examined the impact of instructor engagement on learning outcomes in an online course and determined that increased instructor engagement correlated with enhanced discussion board posts and student performance. A similar examination of the relationship between the instructional guidance provided and student learning outcomes would be a valuable next step. It could offer more explicit guidance and recommendations for the design and use of active learning strategies in online or blended courses.
Conclusion
Education was disrupted out of necessity for at least two years. This experience forced us to examine our practices in online and blended learning, as our sample size for evaluation grew dramatically. The outcome of our analysis is that effective design and inclusion of student engagement and interactions with instructors are critical for quality learning experiences (Rapanta et al., 2021; Sutarto, Sari and Fathurrochman, 2020; Varvara et al., 2021). Active learning appeals to many students (Christie & De Graaff, 2017) and instructors as it can help achieve many of the desired and required outcomes of our courses and programs. Our review and discussion highlighted the need to provide clear and explicit guidance to help minimize cognitive load and guide students through an invaluable learning experience. Further, instructors and designers who include explicit guidance participate in a metacognitive process, while they outline the purpose and sequence of steps required for the completion of active learning exercises. Creating instructions and providing a rationale for the use of active learning in a course gives instructors and designers an opportunity to reflect on the process and ensure that it aligns with the intended purpose or stated goals of the course. This reflective act makes active learning more intentional in use rather than employing it to ensure that students are present within the learning space.
References
Ahshan, R. (2021). A Framework of Implementing Strategies for Active Student Engagement in Remote/Online Teaching and Learning during the COVID-19 Pandemic. Education Sciences, 11(9). https://doi.org/10.3390/educsci11090483
Ashiabi, G. S., & O’neal, K. K. (2008). A Framework for Understanding the Association Between Food Insecurity and Children’s Developmental Outcomes. Child Development Perspectives, 2(2), 71–77.
Bada, S. O., & Olusegun, S. (2015). Constructivism learning theory: A paradigm for teaching and learning. Journal of Research & Method in Education, 5(6), 66–70.
Barrows, H. S. (1996). Problem‐based learning in medicine and beyond: A brief overview. New Directions for Teaching and Learning, 1996(68), 3–12.
Bereiter, C. (2014). Principled practical knowledge: Not a bridge but a ladder. Journal of the Learning Sciences, 23(1), 4–17.
Cavanaugh, J., Jacquemin, S. J., & Junker, C. R. (2023). Variation in student perceptions of higher education course quality and difficulty as a result of widespread implementation of online education during the COVID-19 pandemic. Technology, Knowledge and Learning, 28(4), 1787–1802.
Chinn, C. A., & Iordanou, K. (2023). Theories of Learning. Handbook of Research on Science Education: Volume III.
Christie, M., & De Graaff, E. (2017). The philosophical and pedagogical underpinnings of Active Learning in Engineering Education. European Journal of Engineering Education, 42(1), 5–16.
Cobb, P., & Bowers, J. (1999). Cognitive and situated learning perspectives in theory and practice. Educational Researcher, 28(2), 4–15.
Cooper, K. M., Schinske, J. N., & Tanner, K. D. (2021). Reconsidering the share of a think–pair–share: Emerging limitations, alternatives, and opportunities for research. CBE—Life Sciences Education, 20(1), fe1.
Crompton, H., & Burke, D. (2024). The Educational Affordances and Challenges of ChatGPT: State of the Field. TechTrends, 1–13.
de Jong, T., Lazonder, A. W., Chinn, C. A., Fischer, F., Gobert, J., Hmelo-Silver, C. E., Koedinger, K. R., Krajcik, J. S., Kyza, E. A., & Linn, M. C. (2023). Let’s talk evidence–The case for combining inquiry-based and direct instruction. Educational Research Review, 100536.
Dring, J. C. (2019). Problem-Based Learning – Experiencing and understanding the prominence during Medical School: Perspective. Annals of Medicine and Surgery, 47, 27–28. https://doi.org/10.1016/j.amsu.2019.09.004
Duncan, R. G., & Chinn, C. A. (2021). International handbook of inquiry and learning. Routledge.
Finelli, C. J., Nguyen, K., DeMonbrun, M., Borrego, M., Prince, M., Husman, J., Henderson, C., Shekhar, P., & Waters, C. K. (2018). Reducing student resistance to active learning: Strategies for instructors. Journal of College Science Teaching, 47(5).
Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410–8415.
Hammer, D. (1997). Discovery learning and discovery teaching. Cognition and Instruction, 15(4), 485–529.
Hartikainen, S., Rintala, H., Pylväs, L., & Nokelainen, P. (2019). The Concept of Active Learning and the Measurement of Learning Outcomes: A Review of Research in Engineering Higher Education. Education Sciences, 9(4). https://doi.org/10.3390/educsci9040276
Hartwell, A., Anderson, M., Hanlon, P., & Brown, B. (2021). Asynchronous discussion forums: Five learning designs.
Kalyuga, S., Chandler, P., & Sweller, J. (2001). Learner experience and efficiency of instructional guidance. Educational Psychology, 21(1), 5–23.
Klepsch, M., & Seufert, T. (2020). Understanding instructional design effects by differentiated measurement of intrinsic, extraneous, and germane cognitive load. Instructional Science, 48(1), Article 1.
Krahenbuhl, K. S. (2016). Student-centered Education and Constructivism: Challenges, Concerns, and Clarity for Teachers. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 89(3), 97–105. https://doi.org/10.1080/00098655.2016.1191311
Lange, C., Gorbunova, A., Shcheglova, I., & Costley, J. (2022). Direct instruction, worked examples and problem solving: The impact of instructional strategies on cognitive load. Innovations in Education and Teaching International, 1–13.
Lapitan Jr, L. D., Tiangco, C. E., Sumalinog, D. A. G., Sabarillo, N. S., & Diaz, J. M. (2021). An effective blended online teaching and learning strategy during the COVID-19 pandemic. Education for Chemical Engineers, 35, 116–131.
Lee, J. W. (2020). The roles of online instructional facilitators and student performance of online class activity. Lee, Jung Wan (2020). The Roles of Online Instructional Facilitators and Student Performance of Online Class Activity. Journal of Asian Finance Economics and Business, 7(8), 723–733.
Li, L., Xu, L. D., He, Y., He, W., Pribesh, S., Watson, S. M., & Major, D. A. (2021). Facilitating online learning via zoom breakout room technology: A case of pair programming involving students with learning disabilities. Communications of the Association for Information Systems, 48(1), 12.
Lyman, F. (1981). Strategies for Reading Comprehension Think Pair Share. Unpublished Paper. University of Maryland Paper. Http://Www. Roe13. K12. Il.
Mintzes, J. J. (2020). From constructivism to active learning in college science. Active Learning in College Science: The Case for Evidence-Based Practice, 3–12.
Misra, F., & Mazelfi, I. (2021). Long-distance online learning during pandemic: The role of communication, working in group, and self-directed learning in developing student’s confidence. 225–234.
Murphy, J. T. (2023). Advice | 5 Ways to Ease Students Off the Lecture and Into Active Learning. The Chronicle of Higher Education. https://www.chronicle.com/article/5-ways-to-ease-students-off-the-lecture-and-onto-active-learning
Nerantzi, C. (2020). The use of peer instruction and flipped learning to support flexible blended learning during and after the COVID-19 Pandemic. International Journal of Management and Applied Research, 7(2), 184–195.
Rapanta, C., Botturi, L., Goodyear, P., Guàrdia, L., & Koole, M. (2021). Balancing technology, pedagogy and the new normal: Post-pandemic challenges for higher education. Postdigital Science and Education, 3(3), 715–742.
Rincon-Flores, E. G., & Santos-Guevara, B. N. (2021). Gamification during Covid-19: Promoting active learning and motivation in higher education. Australasian Journal of Educational Technology, 37(5), 43–60. https://doi.org/10.14742/ajet.7157
Scardamalia, M., & Bereiter, C. (2006). Knowledge building. The Cambridge.
Schunk, D. H. (2012). Learning theories an educational perspective. Pearson Education, Inc.
Seethamraju, R. (2014). Effectiveness of using online discussion forum for case study analysis. Education Research International, 2014.
Slocum, T. A., & Rolf, K. R. (2021). Features of direct instruction: Content analysis. Behavior Analysis in Practice, 14(3), 775–784.
Sutarto, S., Sari, D. P., & Fathurrochman, I. (2020). Teacher strategies in online learning to increase students’ interest in learning during COVID-19 pandemic. Jurnal Konseling Dan Pendidikan, 8(3), 129–137.
Sweller, J. (2020). Cognitive load theory and educational technology. Educational Technology Research and Development, 68(1), 1–16.
Tan, H. R., Chng, W. H., Chonardo, C., Ng, M. T. T., & Fung, F. M. (2020). How chemists achieve active learning online during the COVID-19 pandemic: Using the Community of Inquiry (CoI) framework to support remote teaching. Journal of Chemical Education, 97(9), 2512–2518.
Varvara, G., Bernardi, S., Bianchi, S., Sinjari, B., & Piattelli, M. (2021). Dental Education Challenges during the COVID-19 Pandemic Period in Italy: Undergraduate Student Feedback, Future Perspectives, and the Needs of Teaching Strategies for Professional Development. Healthcare, 9(4). https://doi.org/10.3390/healthcare9040454
Zhang, L. (2022). Guidance differs between teaching modes: Practical challenges in integrating hands-on investigations with direct instruction. Learning: Research and Practice, 8(2), 96–115.
Zhang, L., & Cobern, W. W. (2021). Confusions on “guidance” in inquiry-based science teaching: A response to Aditomo and Klieme (2020). Canadian Journal of Science, Mathematics and Technology Education, 21, 207–212.
Zhang, L., Kirschner, P. A., Cobern, W. W., & Sweller, J. (2022). There is an evidence crisis in science educational policy. Educational Psychology Review, 34(2), 1157–1176.
Zou, D., & Xie, H. (2019). Flipping an English writing class with technology-enhanced just-in-time teaching and peer instruction. Interactive Learning Environments, 27(8), 1127–1142.
Abstract - Active learning strategies tend to originate from one of two dominant philosophical perspectives. The first position is active learning as an instructional philosophy, whereby inquiry-based and discovery learning are primary modalities for acquiring new information. The second perspective considers active learning a strategy to supplement the use of more structured forms of instruction, such as direct instruction. From the latter perspective, active learning is employed to reinforce conceptual learning following the presentation of factual or foundational knowledge. This review focuses on the second perspective and uses of active learning as a strategy. We highlight the need and often overlooked requirement for including instructional guidance to ensure active learning, which can be effective and efficient for learning and learners.
Keywords - Active learning, instructional guidance, design strategy, cognitive load, efficiency, online and blended courses
Introduction
Learner engagement in online courses has been a central theme in educational research for several years (Martin, Sun and Westing, 2020). As we consider the academic experiences during the COVID-19 pandemic, which began in 2020 and started to subside in 2022, it is essential to reflect on the importance of course quality (Cavanaugh, Jacquemin and Junker, 2023) and learner experience in online courses (Gherghel, Yasuda and Kita, 2023). Rebounding from our collected experience, learner engagement continues to be an important element of course design and delivery. This fact was highlighted in 2021, when the United States Department of Education (DOE) set forth new standards for institutions offering online courses. To be eligible for Title IV funding, new standards require non-correspondence courses to ensure regular and substantive interactions (RSI) between instructors and students (Downs, 2021). This requirement necessitates the need to find ways to engage students allowing instructors the ability to maximize their interactions. One possible solution is to use active learning techniques that have been shown to increase student engagement and learning outcomes (Ashiabi & O’ Neal, 2008; Cavanaugh et al., 2023).
Active learning is an important instructional strategy and pedagogical philosophy used to design quality learning experiences and foster engaging and interactive learning environments. However, this is not a novel perspective. Many years ago in their seminal work, Chickering and Gamson (1987) discussed the issue of interaction between instructors and students, suggesting that this was an essential practice for quality undergraduate education. The newfound focus on active learning strategies has become more pronounced following an examination of instructional practices from 2020 to 2022. For example, Tan, Chng, Chonardo, Ng and Fung (2020) examined how chemistry instructors incorporated active learning into their instruction to achieve equivalent learning experiences in pre-pandemic classrooms. Similarly, Misra and Mazelfi (2021) described the need to incorporate group work or active learning activities into remote courses to: ‘increase students’ learning motivation, enforce mutual respect for friends’ opinions, foster excitement’ (p. 228). Rincon-Flores & Santos-Guevara (2021) found that gamification as a form of active learning, ‘helped to motivate students to participate actively and improved their academic performance, in a setting where the mode of instruction was remote, synchronous, and online’ (p.43). Further, the implementation of active learning, particularly gamification, was found to be helpful for promoting a more humanizing learning experience (Rincon-Flores & Santos-Guevara, 2021).
This review examines the use of active learning and presents instructional guidance as an often-overlooked element that must be included to make active learning useful and effective. The omission of explicit and direct instructional guidance when using active learning can be inefficient, resulting in an extraneous cognitive burden on learners (Lange, Gorbunova, Shcheglova and Costley, 2022). We hope to outline our justification through a review of active learning and offer strategies to ensure that the implementation of active learning is effective.
Active Learning as an Instructional Philosophy
Active learning is inherently a ‘student-centered’ instructional paradigm that is derived from a constructivist epistemological perspective (Krahenbuhl, 2016; Schunk, 2012). Constructivism theorizes that individuals construct their understanding through interactions and engagements, whereby the refinement of skills and knowledge results over time (Cobb & Bowers, 1999). Through inquiry, students produce experiences and make connections that lead to logical and conceptual growth (Bada & Olusegun, 2015). Engaging learners in activities, tasks, and planned experiences is an overarching premise of active learning as an instructional philosophy. As an overarching instructional philosophy, the role of instructional guidance can be minimized. As Hammer (1997) pointed out many years ago, the role of the instructor in these environments is to provide content and materials, and students are left make ‘discoveries’ through inquiry.
Inquiry-based learning (IBL) is an instructional practice that falls under the general category of ‘active learning’. The tenets of IBL adhere to a constructivist learning philosophy (de Jong et al., 2023) and can be characterized by the following six elements (Duncan & Chinn, 2021). Students will:
Generate knowledge through investigation of a novel issue or problem.
Work ‘actively’ to discover new findings.
Use of evidence to derive conclusions.
Take responsibility for their own learning through ‘epistemological agency’ (Chinn & Iordanou, 2023) and share their learning with a community of learners.
Use problem-solving and reasoning for complex tasks.
Collaborate, share ideas, and derive solutions with peers.
Historically, inquiry-based learning as a form of active learning was adopted as an overall instructional paradigm in disciplines such as medicine and was closely aligned with problem-based learning (PBL) (Barrows, 1996). Proponents of PBL advocate its use because of its emphasis on the development of skills such as communication, collaboration, and critical thinking (Dring, 2019). Critics of these constructivist approaches to instruction highlight the absence of a structure and any form of instructional guidance (Zhang & Cobern, 2021). Instead, they advocate a more explicit form of instruction such as direct instruction (Zhang, Kirschner, Corben and Sweller, 2022).
The view that a hybrid of IBL coupled with direct instruction is the optimal approach to implementing active learning has been highlighted in the recent academic literature (de Jong et al., 2023). The authors suggest that the selection of direct instruction or active learning strategies, such as IBL, should be guided by the desired outcomes of instruction. If the goal of instruction is the acquisition of more foundational or factual information, direct instruction is the preferred strategy. Conversely, IBL strategies are more appropriate ‘for the promotion of deep understanding and transferrable conceptual understanding of topics that are open-ended or susceptible to misconceptions’ (de Jong et al., 2023 p. 7).
The recommendation to use both direct instruction and approaches like IBL has reframed active learning as an instructional strategy rather than an overarching pedagogical philosophy. Active learning should be viewed as a technique or strategy coupled with direct instructional approaches (de Jong et al., 2023).
Active Learning as an Instructional Strategy
Approaching active learning as an instructional strategy rather than an overarching instructional philosophy helps clarify and address the varying perspectives found in the literature. Zhang et al. (2022) suggested that there is a push to emphasize exploration-based pedagogy. This includes instructional approaches deemed to be predicated on inquiry, discovery, or problem-based approaches. This emphasis has resulted in changes to curricular policies that mandate the incorporation of these instructional philosophies. Zhang et al. (2022) discussed how active learning approaches can be incorporated into science education policy to emphasize ‘inquiry’ approaches, despite adequate evidence for effectiveness. Zhang et al. (2022) stated that the ‘disjoint between policy documents and research evidence is exacerbated by the tendency to ignore categories of research that do not provide the favored research outcomes that support teaching science through inquiry and investigations’ (p. 1162). Instead, Zhang et al. (2022) advocate for direct instruction as the primary mode of instruction in science education with active learning or ‘inquiry’ learning incorporated as a strategy, arguing that conceptual or foundational understanding ‘should not be ‘traded off’ by prioritizing other learning outcomes’ (p. 1172).
In response to Zhang et al. ’s (2022) critique, de Jong et al. (2023) argued that research evidence supports the use of inquiry-based instruction for the acquisition of conceptual understanding in science education. They asserted that both inquiry-based (or active learning approaches) and direct instruction serve specific learning needs. Direct instruction may be superior for foundational or factual learning, while inquiry-based or active learning may be better for conceptual understanding and reinforcement. The conclusion of de Jong et al. ’s (2023) argument suggests the use of a hybrid of direct instruction and active learning techniques, such as inquiry-based designs, depending on the stated learning objectives of the course or the desired outcomes.
This hybrid approach to instructional practice can help ensure that intended learning outcomes are matched with effective instructional strategies. Furthermore, a hybrid approach can help maintain efficiency in learning rather than leaving the acquisition of stated learning outcomes to discovery or happenstance (Slocum & Rolf, 2021). This notion was supported by Nerantzi's (2020) suggestion that ‘students learn best when they are active and immersed in the learning process, when their curiosity is stimulated, when they can ask questions and debate in and outside the classroom, when they are supported in this process and feel part of a learning community’ (p. 187). Emphasis on learner engagement may support the belief that active learning strategies combined with direct instruction may provide an optimal environment for learning. Active learning strategies can be used to reinforce the direct or explicit presentation of concepts and principles (Lapitan Jr, Tiangco, Sumalinog, Sabarillo and Diaz, 2021).
Recently, Zhang (2022) examined the importance of integrating direct instruction with hands-on investigation as an instructional model in high school physics classes. Zhang (2022) determined that ‘students benefit more when they develop a thorough theoretical foundation about science ideas before hands-on investigations’ (p. 111). This supports the earlier research in post-secondary STEM disciplines as reported by Freeman, Eddy, McDonough and Wenderoth (2014), where the authors suggested that active learning strategies help to improve student performance. The authors further predicted that active learning interventions would show more significant learning gains when combined with ‘required exercises that are completed outside of formal class sessions’ (p. 8413).
Active Learning Strategies
Active learning is characterized by activities, tasks, and learner interactions. Several characteristics of active learning have been identified, including interaction, peer learning, and instructor presence (Nerantzi, 2020). Technology affords students learning opportunities to connect pre-, during-, and post-formal learning sessions (Zou & Xie, 2019; Nerantzi, 2020). The interactions or techniques that instructors use help determine the types of interactions and outcomes that will result. Instructors may be ‘present’ or active in the process but may not provide adequate instructional guidance for techniques to be efficient or effective (Cooper, Schinske and Tanner, 2021; Kalyuga, Chandler and Sweller. 2001). To highlight this gap, we first consider the widely used technique of think-pair-share, an active learning strategy first introduced by Lyman (1981). This active learning strategy was introduced to provide all students equitable opportunities to think and discuss ideas with their peers. The steps involved in this technique were recently summarized (Cooper et al., 2021): i) provide a prompt or question to students, (ii) give students a chance to think about the question or prompt independently, (iii) have students share their initial answers/responses with a neighbor in a pair or a small group, and (iv) invite a few groups a chance to share their responses with the whole class.
Instructional guidance outlines the structure and actions associated with a task. This includes identifying the goals and subgoals, and suggesting strategies or algorithms to complete the task (Kalyuga et al., 2001). Employing the strategy of think-pair-sharing requires more instructional guidance than instructors may consider. The title of the strategy foreshadows what students will ‘do’ to complete the activity. However, instructional guidance is essential to help students focus on the outcome, rather than merely enacting the process of the activity. Furthermore, instructional guidance or instructions given to students when employing think-pair-sharing can help make this activity more equitable. Cooper et al. (2021) point out that equity is an important consideration when employing think-pair-share. Often, think-pair-share activities are not equitable during the pair or share portion of the exercise, and can be dominated by more vocal or boisterous students. Instructional guidance can help ensure that the activity is more equitable by providing more explicit instructions on expectations for sharing. For example, the instructions for a think-pair-share activity may include those that require each student to compose and then share ideas on a digital whiteboard or on a slide within a larger shared slide deck. The opportunity for equitable learning must be built into the instructions given to students. Otherwise, the learning experience could be meaningless or lack the contribution of students who are timid or find comfort in a passive role during group learning.
Further considerations for instructional guidance are necessary since we now use various forms of Information and Communications Technology (ICT) to promote active learning strategies. Web conferencing tools, such as Zoom, Microsoft Teams, and Google Meet, were used frequently during the height of required remote or hybrid teaching (Ahshan, 2021). Activities that separated students into smaller work groups via breakout rooms or unique discussion threads often included instructions on what students were to accomplish in these smaller collaborative groups. However, the communication of expectations or explicit guidance to help direct students in these groups were often not explicit or were not accessible once the students had been arranged into their isolated workspaces. These active learning exercises would have benefited from clear guidance and instructions on how to ‘call for help’ once separated from the larger group meetings. For example, Li, Xu, He, He, Pribesh, Watson and Major, (2021) described an activity for pair programming that uses zoom breakout rooms. In their description, the authors outlined the steps learners were expected to follow to successfully complete the active learning activity, as well as the mechanisms students used to ask for assistance once isolated from the larger Zoom session that contained the entire class. The description by Li et al. (2021) provided an effective approach to instructional guidance for active learning using Zoom. Often, instructions are verbalized or difficult to refer to once individuals are removed from the general or common room. The lack of explicit instructional guidance in these activities can result in inefficiency (Kalyuga et al., 2001) and often inequity (Cooper et al., 2021).
The final active learning approach considered here was a case study analysis of asynchronous discussion forums. To extend engagement with course content, students were assigned a case study to discuss in a group discussion forum. The group is invited to apply course concepts and respond to questions as they analyze the case and prepare recommendations and a solution (Hartwell et al., 2021). Findings indicate that case study analysis in discussion forums as an active learning strategy “encouraged collaborative learning and contributed to improvement in cognitive learning” (Seethamraju, 2014, p. 9). While this active learning strategy can engage students with course materials to apply these concepts in new situations, it can also result in a high-volume-low-yield set of responses and posts without sufficient instructional guidance and clear expectations for engagement and deliverables. Hartwell, Anderson, Hanlon, and Brown (2021) offer guidance on the effective use of online discussion forums for case study analysis, such as clear expectations for student work in teams (e.g., a team contract), ongoing teamwork support through regular check-ins and assessment criteria, clear timelines and tasks for individual analysis, combined group discussion and cross-case comparison, review of posted solutions, and requirements for clear connections between case analysis and course concepts.
Active Learning & Cognitive Load Theory
In a recent review of current policy and educational standards within STEM disciplines, Zhang et al. (2022) argued that structured instructional approaches such as direct instruction align more closely with cognitive-based learning theories. These theories are better at predicting learning gains and identifying how learning occurs. Cognitive load theory is one such theory based on three main assumptions. First, humans have the capacity to obtain novel information through problem-solving or from other people. Obtaining information from other individuals is more efficient than generating solutions themselves. Second, acquired information is confronted by an individual’s limited capacity to first store information in working memory and then transfer it to unlimited long-term memory for later use. Problem-solving imposes a heavy burden on limited working memory. Thus, learners often rely on the information obtained from others. Finally, information stored in long-term memory can be transferred back to working memory to deal with familiar situations (Sweller, 2020). The recall of information from long-term memory to working memory is not bound by the limits of the initial acquisition of information in working memory (Zhang et al., 2022).
Zhang et al. (2022) state that ‘there never is a justification for engaging in inquiry-based learning or any other pedagogically identical approaches when students need to acquire complex, novel information’ (p. 1170). This is clearly a one-sided argument that focuses on the acquisition of information rather than the application of acquired information. This also presents an obvious issue related to the efficiency of acquiring novel information. However, Zhang et al. (2022) did not argue against the use of active learning or inquiry learning strategies to help reinforce concepts, or the use of the same to support direct instruction.
The combination of active learning strategies with direct instruction can be modified using assumptions of cognitive load, which highlights the need to include instructional guidance with active learning strategies. The inclusion of clear and precise instructions or instructional guidance is critical for effective active learning strategies (Murphy, 2023). As de Jong et al. (2023) suggest, ‘guidance is (initially) needed to make inquiry learning successful' (p.9). We cannot assume that instructional guidance is implied through the name of the activity or can be determined from the previous learning experiences of students. Assumptions lead to ambiguous learning environments that lack instructional guidance, force learners to infer expectations, and rely on prior and/or potentially limited active learning experiences. In the following section, we offer suggestions for improving the use of active learning strategies in online and blended learning environments by adding instructional guidance.
Suggestions for Improving the Use of Active Learning in Online and Blended Courses
The successful implementation of active learning depends on several factors. One of the most critical barriers to the adoption of active learning is student participation. As Finelli et al. (2018) highlighted, students may be reluctant to participate demonstrating behaviors such as, ‘not participating when asked to engage in an in-class activity, distracting other students, performing the required task with minimal effort, complaining, or giving lower course evaluations’ (p. 81). These behaviors are reminiscent of petulant adolescents, often discouraging instructors from implementing active learning in the future. To overcome this, the authors suggested that providing a clear explanation of the purpose of the active learning exercise would help curb resistance to participation. More recently, de Jong et al. (2023) stated a similar perspective that ‘a key issue in interpreting the impact of inquiry-based instruction is the role of guidance’ (p. 5). The inclusion of clear and explicit steps for completing an active learning exercise is a necessary design strategy. This aspect of instructional guidance is relatively easy to achieve with the arrival of generative artificial intelligence (AI) tools used to support instructors. As Crompton and Burke (2024) pointed out in their recent review, ‘ChatGPT can assist teachers in the creation of content, lesson plans, and learning activities’ (p.384). More specifically, Crompton and Burke (2024) suggested that generative AI could be used to provide step-by-step instructions for students. To illustrate this point, we entered the following prompt into the generative AI tool, goblin.tools (https://goblin.tools/) ‘Provide instructions given to students for a carousel activity in a college class.’ The output is shown in Fig. 1. This tool is used to break down tasks into steps, and if needed, it can further break down each step into a more discrete sequence of steps.
Figure 1 . Goblin.tools instructions for carousel active learning exercises.
The omission of explicit steps or direct instructional guidance in an active learning exercise can potentially increase extraneous cognitive load (Klepsch & Seufert, 2020; Sweller, 2020). This pernicious impact on cognitive load is the result of the diversion of one’s limited capacity to reconcile problems (Zhang, 2022). Furthermore, the complexity of active learning within an online or blended course is exacerbated by the inclusion of technologies used for instructional purposes. Instructional guidance should include requisite guidance for tools used in active learning. Again, generative AI tools, such as goblin.tools, may help mitigate the potential burden on cognitive load. For example, the use of webconferencing tools, such as Zoom or Microsoft Teams, has been pervasive in higher education. Anyone who uses these tools can relate to situations in which larger groups are segmented into smaller groups in isolated breakout rooms. Once participant relocation has occurred, there is often confusion regarding the intended purpose or goals of the breakout room. Newer features, such as collaborative whiteboards, exacerbate confusion and the potential for excessive extraneous load. Generative AI instructions (see Figure 2) could be created and offered to mitigate confusion and cognitive load burden.
Figure 2. Zoom collaborative whiteboard instructions produced by goblin.tools
Generative AI has the potential to help outline the steps in active learning exercises. This can be used to minimize confusion and serve as a reference for students. However, instruction alone is often insufficient to make active learning effective. As Finelli et al. (2018) suggest, the inclusion of a rationale for implementing active learning is an effective mechanism to encourage student participation. To this end, we suggest the adoption of what Bereiter (2014) called Principled Practical Knowledge (PPK) which consists of the combination of ‘know-how’ with ‘know why’ (Bereiter, 2014). This perspective develops out of learners’ efforts to solve practical problems. It is a combination of knowledge that extends beyond simply addressing the task at hand. There is an investment of effort to provide a rationale or justification to address the ‘know why’ portion of PPK (Bereiter, 2014). Creating conditions for learners to develop ‘know-how’ is critical when incorporating active learning strategies in online and blended courses. Instructional guidance can reduce ambiguity and extraneous load and can also increase efficiency and potentially equity.
What is typically not included in the instructional guidance offered to students is comprehensive knowledge that outlines the requirements for technology that is often employed in active learning strategies. Ahshan (2021) suggests that technology skill competency is essential for the instructors and learners to implement the activities smoothly. Therefore, knowledge should include the tools employed in active learning. Instructors cannot assume that learners have a universal baseline of technological competency and thus need to be aware of this diversity when providing instructional guidance.
An often-overlooked element of instructional guidance connected to PPK is the ‘know-why’ component. Learners are often prescribed learning tasks without a rationale or justification for their utility. The underlying assumption for implementing active learning strategies is the benefits of collaboration, communication, and collective problem-solving are clear to learners (Dring, 2019; Hartikainen et al., 2019). However, these perceived benefits or rationales are often not provided explicitly to learners; instead, they are implied through use.
When implementing active learning techniques or strategies in a blended or online course one needs to consider not only the ‘know-how,’ but also the ‘know-why.’ Table 1 helps to identify the scope of instructional guidance that should be provided to students.
Table 1. Recommended Type of Instructional Guidance for Active Learning
Know How
Know Why
Activity
Steps
Purpose / Rationale
Technology
Steps
Purpose / Rationale
Outcomes / Products
Completion
Goals
The purpose of providing clear and explicit instructional guidance to learners is to ensure efficiency, equity, and value in incorporating active learning strategies into online and blended learning environments. Along with our argument for “know-why” (Bereiter, 2012), we draw upon Murphy (2023) who highlights the importance of “know-how’ by stating, ‘if students do not understand how a particular learning design helps them arrive at a particular outcome, they tend to be less invested in a course’ (n.p.).
Clear instructional guidance does not diminish the authenticity of various active learning strategies such as problem-based or inquiry-based techniques. In contrast, guidance serves to scaffold the activity and clearly outline learner expectations. Design standards organizations, such as Quality Matters, suggest the inclusion of statements that indicate a plan for how instructors will engage with learners, as well as the requirements for learner engagement in active learning. These statements regarding instructor engagement could be extended to include more transparency in the selection of instructional strategies. Murphy (2023) suggested that instructors should ‘pull back the curtain’ and take a few minutes to share the rationale and research that informs their decision to use strategies such as active learning. Opening a dialogue about the design process with students helps to manage expectations and anxieties that students might have in relation to the ‘What?’, ‘Why?’ and ‘How?’ for the active learning exercises.
Implications for Future Research
We contend that a blend of direct instruction and active learning strategies is optimized by instructional guidance, which provides explicit know-how and know-why for students to engage in learning tasks and activities. The present discussion does not intend to evaluate the utility of active learning as an instructional strategy. The efficacy of active learning is a recurring theme in the academic literature, and the justification for efficacy is largely anecdotal or based on self-reporting data from students (Hartikainen, Rintala, Pylväs and Nokelainen, 2019). Regardless, the process of incorporating active learning strategies with direct instruction appears to be beneficial for learning (Ahshan, 2021; Christie & De Graaff, 2017; Mintzes, 2020), and more likely, the learning experience can be harder to quantify. Our argument relates to the necessary inclusion of instructions and guidance that make the goals of active learning more efficient and effective (de Jong et al., 2023). Scardamalia and Bereiter (2006) stated earlier that knowledge about dominates traditional educational practice. It is the stuff of textbooks, curriculum guidelines, subject-matter tests, and typical school “projects” and “research” papers. Knowledge would be the product of active learning. In contrast, knowledge of, ‘suffers massive neglect’ (p. 101). Knowledge enables learners to do something and allows them to actively participate in an activity. Knowledge comprises both procedural and declarative knowledge. It is activated when the need for it is encountered in the action. Instructional guidance can help facilitate knowledge of, making the use of active learning techniques more efficient and effective.
Research is needed on the impact of instructional guidance on active learning strategies, especially when considering the incorporation of more sophisticated technologies and authentic problems (Rapanta, Botturi, Goodyear, Guardia and Koole 2021; Varvara, Bernardi, Bianchi, Sinjari and Piattelli, 2021). Recently, Lee (2020) examined the impact of instructor engagement on learning outcomes in an online course and determined that increased instructor engagement correlated with enhanced discussion board posts and student performance. A similar examination of the relationship between the instructional guidance provided and student learning outcomes would be a valuable next step. It could offer more explicit guidance and recommendations for the design and use of active learning strategies in online or blended courses.
Conclusion
Education was disrupted out of necessity for at least two years. This experience forced us to examine our practices in online and blended learning, as our sample size for evaluation grew dramatically. The outcome of our analysis is that effective design and inclusion of student engagement and interactions with instructors are critical for quality learning experiences (Rapanta et al., 2021; Sutarto, Sari and Fathurrochman, 2020; Varvara et al., 2021). Active learning appeals to many students (Christie & De Graaff, 2017) and instructors as it can help achieve many of the desired and required outcomes of our courses and programs. Our review and discussion highlighted the need to provide clear and explicit guidance to help minimize cognitive load and guide students through an invaluable learning experience. Further, instructors and designers who include explicit guidance participate in a metacognitive process, while they outline the purpose and sequence of steps required for the completion of active learning exercises. Creating instructions and providing a rationale for the use of active learning in a course gives instructors and designers an opportunity to reflect on the process and ensure that it aligns with the intended purpose or stated goals of the course. This reflective act makes active learning more intentional in use rather than employing it to ensure that students are present within the learning space.
References
Ahshan, R. (2021). A Framework of Implementing Strategies for Active Student Engagement in Remote/Online Teaching and Learning during the COVID-19 Pandemic. Education Sciences, 11(9). https://doi.org/10.3390/educsci11090483
Ashiabi, G. S., & O’neal, K. K. (2008). A Framework for Understanding the Association Between Food Insecurity and Children’s Developmental Outcomes. Child Development Perspectives, 2(2), 71–77.
Bada, S. O., & Olusegun, S. (2015). Constructivism learning theory: A paradigm for teaching and learning. Journal of Research & Method in Education, 5(6), 66–70.
Barrows, H. S. (1996). Problem‐based learning in medicine and beyond: A brief overview. New Directions for Teaching and Learning, 1996(68), 3–12.
Bereiter, C. (2014). Principled practical knowledge: Not a bridge but a ladder. Journal of the Learning Sciences, 23(1), 4–17.
Cavanaugh, J., Jacquemin, S. J., & Junker, C. R. (2023). Variation in student perceptions of higher education course quality and difficulty as a result of widespread implementation of online education during the COVID-19 pandemic. Technology, Knowledge and Learning, 28(4), 1787–1802.
Chinn, C. A., & Iordanou, K. (2023). Theories of Learning. Handbook of Research on Science Education: Volume III.
Christie, M., & De Graaff, E. (2017). The philosophical and pedagogical underpinnings of Active Learning in Engineering Education. European Journal of Engineering Education, 42(1), 5–16.
Cobb, P., & Bowers, J. (1999). Cognitive and situated learning perspectives in theory and practice. Educational Researcher, 28(2), 4–15.
Cooper, K. M., Schinske, J. N., & Tanner, K. D. (2021). Reconsidering the share of a think–pair–share: Emerging limitations, alternatives, and opportunities for research. CBE—Life Sciences Education, 20(1), fe1.
Crompton, H., & Burke, D. (2024). The Educational Affordances and Challenges of ChatGPT: State of the Field. TechTrends, 1–13.
de Jong, T., Lazonder, A. W., Chinn, C. A., Fischer, F., Gobert, J., Hmelo-Silver, C. E., Koedinger, K. R., Krajcik, J. S., Kyza, E. A., & Linn, M. C. (2023). Let’s talk evidence–The case for combining inquiry-based and direct instruction. Educational Research Review, 100536.
Dring, J. C. (2019). Problem-Based Learning – Experiencing and understanding the prominence during Medical School: Perspective. Annals of Medicine and Surgery, 47, 27–28. https://doi.org/10.1016/j.amsu.2019.09.004
Duncan, R. G., & Chinn, C. A. (2021). International handbook of inquiry and learning. Routledge.
Finelli, C. J., Nguyen, K., DeMonbrun, M., Borrego, M., Prince, M., Husman, J., Henderson, C., Shekhar, P., & Waters, C. K. (2018). Reducing student resistance to active learning: Strategies for instructors. Journal of College Science Teaching, 47(5).
Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410–8415.
Hammer, D. (1997). Discovery learning and discovery teaching. Cognition and Instruction, 15(4), 485–529.
Hartikainen, S., Rintala, H., Pylväs, L., & Nokelainen, P. (2019). The Concept of Active Learning and the Measurement of Learning Outcomes: A Review of Research in Engineering Higher Education. Education Sciences, 9(4). https://doi.org/10.3390/educsci9040276
Hartwell, A., Anderson, M., Hanlon, P., & Brown, B. (2021). Asynchronous discussion forums: Five learning designs.
Kalyuga, S., Chandler, P., & Sweller, J. (2001). Learner experience and efficiency of instructional guidance. Educational Psychology, 21(1), 5–23.
Klepsch, M., & Seufert, T. (2020). Understanding instructional design effects by differentiated measurement of intrinsic, extraneous, and germane cognitive load. Instructional Science, 48(1), Article 1.
Krahenbuhl, K. S. (2016). Student-centered Education and Constructivism: Challenges, Concerns, and Clarity for Teachers. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 89(3), 97–105. https://doi.org/10.1080/00098655.2016.1191311
Lange, C., Gorbunova, A., Shcheglova, I., & Costley, J. (2022). Direct instruction, worked examples and problem solving: The impact of instructional strategies on cognitive load. Innovations in Education and Teaching International, 1–13.
Lapitan Jr, L. D., Tiangco, C. E., Sumalinog, D. A. G., Sabarillo, N. S., & Diaz, J. M. (2021). An effective blended online teaching and learning strategy during the COVID-19 pandemic. Education for Chemical Engineers, 35, 116–131.
Lee, J. W. (2020). The roles of online instructional facilitators and student performance of online class activity. Lee, Jung Wan (2020). The Roles of Online Instructional Facilitators and Student Performance of Online Class Activity. Journal of Asian Finance Economics and Business, 7(8), 723–733.
Li, L., Xu, L. D., He, Y., He, W., Pribesh, S., Watson, S. M., & Major, D. A. (2021). Facilitating online learning via zoom breakout room technology: A case of pair programming involving students with learning disabilities. Communications of the Association for Information Systems, 48(1), 12.
Lyman, F. (1981). Strategies for Reading Comprehension Think Pair Share. Unpublished Paper. University of Maryland Paper. Http://Www. Roe13. K12. Il.
Mintzes, J. J. (2020). From constructivism to active learning in college science. Active Learning in College Science: The Case for Evidence-Based Practice, 3–12.
Misra, F., & Mazelfi, I. (2021). Long-distance online learning during pandemic: The role of communication, working in group, and self-directed learning in developing student’s confidence. 225–234.
Murphy, J. T. (2023). Advice | 5 Ways to Ease Students Off the Lecture and Into Active Learning. The Chronicle of Higher Education. https://www.chronicle.com/article/5-ways-to-ease-students-off-the-lecture-and-onto-active-learning
Nerantzi, C. (2020). The use of peer instruction and flipped learning to support flexible blended learning during and after the COVID-19 Pandemic. International Journal of Management and Applied Research, 7(2), 184–195.
Rapanta, C., Botturi, L., Goodyear, P., Guàrdia, L., & Koole, M. (2021). Balancing technology, pedagogy and the new normal: Post-pandemic challenges for higher education. Postdigital Science and Education, 3(3), 715–742.
Rincon-Flores, E. G., & Santos-Guevara, B. N. (2021). Gamification during Covid-19: Promoting active learning and motivation in higher education. Australasian Journal of Educational Technology, 37(5), 43–60. https://doi.org/10.14742/ajet.7157
Scardamalia, M., & Bereiter, C. (2006). Knowledge building. The Cambridge.
Schunk, D. H. (2012). Learning theories an educational perspective. Pearson Education, Inc.
Seethamraju, R. (2014). Effectiveness of using online discussion forum for case study analysis. Education Research International, 2014.
Slocum, T. A., & Rolf, K. R. (2021). Features of direct instruction: Content analysis. Behavior Analysis in Practice, 14(3), 775–784.
Sutarto, S., Sari, D. P., & Fathurrochman, I. (2020). Teacher strategies in online learning to increase students’ interest in learning during COVID-19 pandemic. Jurnal Konseling Dan Pendidikan, 8(3), 129–137.
Sweller, J. (2020). Cognitive load theory and educational technology. Educational Technology Research and Development, 68(1), 1–16.
Tan, H. R., Chng, W. H., Chonardo, C., Ng, M. T. T., & Fung, F. M. (2020). How chemists achieve active learning online during the COVID-19 pandemic: Using the Community of Inquiry (CoI) framework to support remote teaching. Journal of Chemical Education, 97(9), 2512–2518.
Varvara, G., Bernardi, S., Bianchi, S., Sinjari, B., & Piattelli, M. (2021). Dental Education Challenges during the COVID-19 Pandemic Period in Italy: Undergraduate Student Feedback, Future Perspectives, and the Needs of Teaching Strategies for Professional Development. Healthcare, 9(4). https://doi.org/10.3390/healthcare9040454
Zhang, L. (2022). Guidance differs between teaching modes: Practical challenges in integrating hands-on investigations with direct instruction. Learning: Research and Practice, 8(2), 96–115.
Zhang, L., & Cobern, W. W. (2021). Confusions on “guidance” in inquiry-based science teaching: A response to Aditomo and Klieme (2020). Canadian Journal of Science, Mathematics and Technology Education, 21, 207–212.
Zhang, L., Kirschner, P. A., Cobern, W. W., & Sweller, J. (2022). There is an evidence crisis in science educational policy. Educational Psychology Review, 34(2), 1157–1176.
Zou, D., & Xie, H. (2019). Flipping an English writing class with technology-enhanced just-in-time teaching and peer instruction. Interactive Learning Environments, 27(8), 1127–1142.
Authored by:
Jay Loftus
Posted on: #iteachmsu
Instructional Guidance Is Key to Promoting Active Learning in Online and Blended Courses
Instructional Guidance Is Key to Promoting Active Learning in Onlin...
Authored by:
PEDAGOGICAL DESIGN
Tuesday, Dec 3, 2024
Posted on: #iteachmsu
NAVIGATING CONTEXT
Caitlin Kirby, Ph.D
Job Title: Associate Director for ResearchDepartment: Enhanced Digital Learning Initative (EDLI)Bio: Dr. Caitlin Kirby is the Associate Director for Research in EDLI, based in the College of Arts and Letters and College of Natural Science. Her research uses qualitative and quantitative methods to explore student and instructor outcomes of professional development and classroom interventions across disciplines. Dr. Kirby earned her PhD in Science Education and Environmental Science from Michigan State University in 2020. She was a Germany Fulbright research student in 2020 exploring the social impacts of urban agriculture. She also worked in postdoctoral research at the University of Nebraska-Lincoln on Science Literacy. Dr. Kirby has teaching and curriculum design experience in K-12, undergraduate, and informal spaces across mathematics, sciences, and social science.
Website | Twitter | LinkedIn
Website | Twitter | LinkedIn
Authored by:
Educator Seminars

Posted on: #iteachmsu

Caitlin Kirby, Ph.D
Job Title: Associate Director for ResearchDepartment: Enhanced Digi...
Authored by:
NAVIGATING CONTEXT
Friday, Jul 21, 2023
Posted on: #iteachmsu
PEDAGOGICAL DESIGN
What is cheating and how do I define it?
Academic integrity has long been a concern, and is even more prevalent with students and instructors moving courses online. Unfortunately, this is a gray area that can be difficult to define, and becomes even more difficult in the online space. What should you do if a student is wearing headphones or keeps looking off-screen during a proctored exam? Or, if a student submits a paper with writing that is inconsistent with their previous work?
The best first step is to have a conversation with the student. Begin from a place of curiosity, rather than a place of blame. A good script to follow is “I noticed this behavior happening. Can you tell me more about what’s going on?” This conversation should help to assess what’s happening in the moment. Did the student look at their phone during the exam because they were cheating, or because they were checking the time or an app that helps them track their health? Did the student look off-screen because they were looking at pre-recorded answers, or because they looked away to think through their answer? Zoom Fatigue is a real phenomenon, and being recorded or seeing themselves on screen while completing exams can add more stress for students. Looking away from the screen might be a natural human behavior as they focus on their answer.
If after talking with the student you feel the need to take action, keep the following points in mind:
The burden of proof falls on the instructor.
If you give the student a penalty grade, you are required to file an academic dishonesty report.
If you do need to submit an academic dishonesty report, know that our approach at MSU comes from an educational philosophy, not a punitive approach. The first step is to identify how we can help the student with their needs. If this is a first offense, students will take a class on academic integrity.
How can you prevent this?
A proactive approach can help prevent questions of cheating. Again, the best first step is to begin with a conversation. Let students know we take integrity seriously at the beginning of the course. Open up the conversation on why integrity is important, try to connect the importance of integrity to the discipline and return to this conversation throughout the course.
Another proactive approach is to re-think your assessment design. Consider tools like Turnitin and exam proctoring tools with a critical eye. These tools are not perfect, and if students are committed to cheating they can find ways to circumvent them. Rather than committing to an approach of assessment surveillance, look at your assessment design. Is there another way to assess what students are learning in your course? For more help with assessment design, see the resources below.
Finally, know that you can set policies for exams in your course. Set the policies you need at the beginning, such as no headphones during exams, or no technology visible on screen during an exam.
Resources:
For more help with questions on academic integrity, contact Shannon Lynn Burton in the Ombuds office at ombud@msu.edu
Or, check out this new book by Phillip Dawson, Defending Assessment Security in a Digital World: https://www.routledge.com/Defending-Assessment-Security-in-a-Digital-World-Preventing-E-Cheating/Dawson/p/book/9780367341527
For more help with thinking about your exam design or assessing your students beyond the exam, register for these upcoming assessment workshops: https://iteach.msu.edu/iteachmsu/groups/iteachmsu/stories/1367
References:
Dawson, P. (2020). Defending Assessment Security in a Digital World. Routledge.
Jiang, M. (2020, April 22). The reason Zoom calls drain you energy. BBC. https://www.bbc.com/worklife/article/20200421-why-zoom-video-chats-are-so-exhausting
The best first step is to have a conversation with the student. Begin from a place of curiosity, rather than a place of blame. A good script to follow is “I noticed this behavior happening. Can you tell me more about what’s going on?” This conversation should help to assess what’s happening in the moment. Did the student look at their phone during the exam because they were cheating, or because they were checking the time or an app that helps them track their health? Did the student look off-screen because they were looking at pre-recorded answers, or because they looked away to think through their answer? Zoom Fatigue is a real phenomenon, and being recorded or seeing themselves on screen while completing exams can add more stress for students. Looking away from the screen might be a natural human behavior as they focus on their answer.
If after talking with the student you feel the need to take action, keep the following points in mind:
The burden of proof falls on the instructor.
If you give the student a penalty grade, you are required to file an academic dishonesty report.
If you do need to submit an academic dishonesty report, know that our approach at MSU comes from an educational philosophy, not a punitive approach. The first step is to identify how we can help the student with their needs. If this is a first offense, students will take a class on academic integrity.
How can you prevent this?
A proactive approach can help prevent questions of cheating. Again, the best first step is to begin with a conversation. Let students know we take integrity seriously at the beginning of the course. Open up the conversation on why integrity is important, try to connect the importance of integrity to the discipline and return to this conversation throughout the course.
Another proactive approach is to re-think your assessment design. Consider tools like Turnitin and exam proctoring tools with a critical eye. These tools are not perfect, and if students are committed to cheating they can find ways to circumvent them. Rather than committing to an approach of assessment surveillance, look at your assessment design. Is there another way to assess what students are learning in your course? For more help with assessment design, see the resources below.
Finally, know that you can set policies for exams in your course. Set the policies you need at the beginning, such as no headphones during exams, or no technology visible on screen during an exam.
Resources:
For more help with questions on academic integrity, contact Shannon Lynn Burton in the Ombuds office at ombud@msu.edu
Or, check out this new book by Phillip Dawson, Defending Assessment Security in a Digital World: https://www.routledge.com/Defending-Assessment-Security-in-a-Digital-World-Preventing-E-Cheating/Dawson/p/book/9780367341527
For more help with thinking about your exam design or assessing your students beyond the exam, register for these upcoming assessment workshops: https://iteach.msu.edu/iteachmsu/groups/iteachmsu/stories/1367
References:
Dawson, P. (2020). Defending Assessment Security in a Digital World. Routledge.
Jiang, M. (2020, April 22). The reason Zoom calls drain you energy. BBC. https://www.bbc.com/worklife/article/20200421-why-zoom-video-chats-are-so-exhausting
Authored by:
Dr. Shannon Lynn Burton and Breana Yaklin

Posted on: #iteachmsu

What is cheating and how do I define it?
Academic integrity has long been a concern, and is even more preval...
Authored by:
PEDAGOGICAL DESIGN
Monday, Nov 23, 2020
Posted on: #iteachmsu
NAVIGATING CONTEXT
Instructor Jumpstart
The CTLI offered two Instructor Jumpstart workshop sessions for MSU’s New Faculty and Academic Staff Orientation in patnership with the Office for Faculty and Academic Staff Development. These hybrid workshops were led by Ellie Louson and Teaching Center director Jeremy Van Hof. Jumpstart is a two-part introduction to high-level topics related to quality, inclusive teaching at Michigan State University and was part of our Semester Start-Up programming for MSU educators. We covered topics such as:
Setting the Tone from the Start
Syllabus Considerations
Engaging Students in the Classroom
Faculty Rights and Responsibilities
Collaborating w/ GTAs and ULAs
Inclusive Teaching and Pedagogy
Building a (personal) Teaching & Learning Network
MSU’s Early Warning System for Students (EASE)
Available Campus Resources
The takeaways from these sessions were:
There are actions you can take to intentionally build a learning environment & culture in your class.
Think about your syllabus as a learning tool and an agreement within your classroom community.
Actively engaging learners with simple practices can improve course outcomes and help support the tone you’ve set.
MSU educators enjoy both rights and responsibilities in their teaching, research, and outreach/creative activities
Think of your work with GTAs/ULAs as a partnership, be aware of power dynamics, and use the Graduate School for GTA guidance and the CTLI for ULA guidance.
There are benefits to students and instructors when courses are designed inclusively, and educators have specific responsibilities to create accessible courses and resources for students.
We recommend that educators new to MSU connect with colleagues and build their personal teaching & learning network
EASE reports are an early-warning system to help colleges identify absent or disengaged students for potential interventions and support early in the semester.
MSU has lots of resources available to help support you and your students.
You can access the single slide deck for both sessions of Jumpstart here [requires a MSU login]. The slides include links to many MSU resources for course instructors. We also heard from participants that the CTLI's new Classroom Scenarios Sample Responses could be valuable in the classroom to help respond to and/or de-escalate distracting or disruptive classroom situations.Feel free to reach out to Ellie Louson or Jeremy Van Hof if you have any questions about New Instructor Jumpstart or the topics described above.Photo by Stephanie Klepacki on Unsplash
Setting the Tone from the Start
Syllabus Considerations
Engaging Students in the Classroom
Faculty Rights and Responsibilities
Collaborating w/ GTAs and ULAs
Inclusive Teaching and Pedagogy
Building a (personal) Teaching & Learning Network
MSU’s Early Warning System for Students (EASE)
Available Campus Resources
The takeaways from these sessions were:
There are actions you can take to intentionally build a learning environment & culture in your class.
Think about your syllabus as a learning tool and an agreement within your classroom community.
Actively engaging learners with simple practices can improve course outcomes and help support the tone you’ve set.
MSU educators enjoy both rights and responsibilities in their teaching, research, and outreach/creative activities
Think of your work with GTAs/ULAs as a partnership, be aware of power dynamics, and use the Graduate School for GTA guidance and the CTLI for ULA guidance.
There are benefits to students and instructors when courses are designed inclusively, and educators have specific responsibilities to create accessible courses and resources for students.
We recommend that educators new to MSU connect with colleagues and build their personal teaching & learning network
EASE reports are an early-warning system to help colleges identify absent or disengaged students for potential interventions and support early in the semester.
MSU has lots of resources available to help support you and your students.
You can access the single slide deck for both sessions of Jumpstart here [requires a MSU login]. The slides include links to many MSU resources for course instructors. We also heard from participants that the CTLI's new Classroom Scenarios Sample Responses could be valuable in the classroom to help respond to and/or de-escalate distracting or disruptive classroom situations.Feel free to reach out to Ellie Louson or Jeremy Van Hof if you have any questions about New Instructor Jumpstart or the topics described above.Photo by Stephanie Klepacki on Unsplash
Authored by:
Ellie Louson

Posted on: #iteachmsu

Instructor Jumpstart
The CTLI offered two Instructor Jumpstart workshop sessions for MSU...
Authored by:
NAVIGATING CONTEXT
Monday, Sep 16, 2024
Posted on: Spring Conference on Teaching & Learning
JamBoard: Where Academic and Intellectual Collaboration Meets Creativity
Title: JamBoard: Where Academic and Intellectual Collaboration Meets CreativityPresenter: Gloria J. AshaoluFormat: Paper PresentationDate: May 11th, 2023Time: 10:15 am - 11:15 amClick here to viewDescription:The advent of the “dramatically amplified” and increased incorporation of digital technological teaching methodologies in classes (Sweeney et. al., 2021) has meant that the use of digital whiteboards has been on the rise. Google’s Jamboard is a collaborative digital whiteboard where students can exchange and record ideas generated during collaborative discussions. Furthermore, the wide arrays of tools (pens, markers, highlighter, sticky notes, text boxes, image upload, etc) allow students to document their thoughts in ways that encourage and empower them to creatively express their ideations—and see their peer’s creations in real-time. Given that Jamboard is free for all Google users and has a relatively easy-to-use interface, it can be a good tool to utilize when engaging in in-class (in-person or remote) collaborative discourse and other forms of diagnostic and formative assessments. This presentation engages with how Jamboard can help facilitate a learning experience where students evaluate, and in their own words, produce answers and create visual aids that allow them to synthesize the course content they are introduced to. This presentation also delves into the limitations of Jamboard—as well as creative means to work around some of these constraints. As with any teaching tool, student engagement and performance ought to be a priority. That said, through the use of a case study, this presentation also discusses how Jamboard can be used to gauge student learning and understanding and develop interventions as informed by the principle of design thinking (empathize, define, ideate, prototype, test, and implement).
Authored by:
Gloria J. Ashaolu

Posted on: MSU Academic Advising
DISCIPLINARY CONTENT
End of Semester Self-Care
As the semester comes to an end, advisors and educators can experience emotional exhaustion, compassion fatigue, and times of heightened stress. In this article, explore MSU resources to support mental, emotional, and physical wellbeing, which are provided to employees for free or at a reduced cost. Below are links to these opportunities, as well as guided mindfulness exercise videos.MSU Health Resources and Programs
MSU Employee Assistance Program (EAP): MSU faculty and staff who are interested in personal counseling are directed to MSU EAP, which offers free, confidential short-term counseling and referral services for MSU employees and members of their immediate family.
Emotional Wellness: The Office of University Physician offers emotional wellness articles, coaching, courses, and additional resources. Learn techniques to successfully navigate a range of human emotions and improve personal well-being.
MSU WorkLife Office: The WorkLife Office partners with the community to create an inclusive, responsive work environment where all faculty and staff are respected and supported toward well-being in work and personal lives. The WorkLife Office offers free events and workshops on topics ranging from recognizing burnout, grounding strategies, well-being at work, stress management, and more!
SPARTANFit Fitness Assessment: This comprehensive fitness assessment will help to determine your current level of fitness. A series of resting and exercising assessments will help establish baseline measurements which can then be used to set goals, monitor performance, and assess progress throughout your exercise program.
Health4U Programs: Health4U is focused on helping the MSU community explore the fundamentals of a health-promoting lifestyle by providing access to high quality, evidence informed, and culturally conscious health education and support.
CAPS Koru Mindfulness Workshop: MSU Counseling and Psychiatric Services offers 4-week long Koru Mindfulness Meditation groups, teaching participants how to train their minds to work mindfully with thoughts and emotions. Groups meet weekly for 75 minutes to learn life transformative skills that increase resiliency and flourishing in the face of life's stressors.
Wellbeing in the Garden: Beal Botanical Garden is a favorite place for people from campus and the community to unplug from the chaos of their everyday lives and enjoy the beauty of plants and nature. Wellbeing in the Garden also provides programming that can give you a path to improved wellbeing.
External Resource for Advisors
Compassion Fatigue and Burnout in Academic Advising: NACADA presentation focuses on academic advisor stress and burnout, including theories and models addressing compassion fatigue. Additionally, this PowerPoint provides easy-to-implement self-care interventions for advisors.
Guided Mindfulness Exercises
Regular mindfulness exercises can help you to identify and manage difficult thoughts, feelings, and sensations. The following video and audio guides are available to assist you with developing your mindfulness practice.
Additional videos and recordings of mindfulness exercises can be found at LivingWell.org.
Mindfulness Meditation to Help Relieve Anxiety and Stress
Mindfulness Guided Meditation - 5 Minutes
MSU Employee Assistance Program (EAP): MSU faculty and staff who are interested in personal counseling are directed to MSU EAP, which offers free, confidential short-term counseling and referral services for MSU employees and members of their immediate family.
Emotional Wellness: The Office of University Physician offers emotional wellness articles, coaching, courses, and additional resources. Learn techniques to successfully navigate a range of human emotions and improve personal well-being.
MSU WorkLife Office: The WorkLife Office partners with the community to create an inclusive, responsive work environment where all faculty and staff are respected and supported toward well-being in work and personal lives. The WorkLife Office offers free events and workshops on topics ranging from recognizing burnout, grounding strategies, well-being at work, stress management, and more!
SPARTANFit Fitness Assessment: This comprehensive fitness assessment will help to determine your current level of fitness. A series of resting and exercising assessments will help establish baseline measurements which can then be used to set goals, monitor performance, and assess progress throughout your exercise program.
Health4U Programs: Health4U is focused on helping the MSU community explore the fundamentals of a health-promoting lifestyle by providing access to high quality, evidence informed, and culturally conscious health education and support.
CAPS Koru Mindfulness Workshop: MSU Counseling and Psychiatric Services offers 4-week long Koru Mindfulness Meditation groups, teaching participants how to train their minds to work mindfully with thoughts and emotions. Groups meet weekly for 75 minutes to learn life transformative skills that increase resiliency and flourishing in the face of life's stressors.
Wellbeing in the Garden: Beal Botanical Garden is a favorite place for people from campus and the community to unplug from the chaos of their everyday lives and enjoy the beauty of plants and nature. Wellbeing in the Garden also provides programming that can give you a path to improved wellbeing.
External Resource for Advisors
Compassion Fatigue and Burnout in Academic Advising: NACADA presentation focuses on academic advisor stress and burnout, including theories and models addressing compassion fatigue. Additionally, this PowerPoint provides easy-to-implement self-care interventions for advisors.
Guided Mindfulness Exercises
Regular mindfulness exercises can help you to identify and manage difficult thoughts, feelings, and sensations. The following video and audio guides are available to assist you with developing your mindfulness practice.
Additional videos and recordings of mindfulness exercises can be found at LivingWell.org.
Mindfulness Meditation to Help Relieve Anxiety and Stress
Mindfulness Guided Meditation - 5 Minutes
Authored by:
Katie Peterson

Posted on: MSU Academic Advising

End of Semester Self-Care
As the semester comes to an end, advisors and educators can experie...
Authored by:
DISCIPLINARY CONTENT
Monday, Jun 17, 2024